Physical models, cross sections, and numerical approximations used in MCNP and GEANT4 Monte Carlo codes for photon and electron absorbed fraction calculation.
نویسندگان
چکیده
PURPOSE Radiopharmaceutical applications in nuclear medicine require a detailed dosimetry estimate of the radiation energy delivered to the human tissues. Over the past years, several publications addressed the problem of internal dose estimate in volumes of several sizes considering photon and electron sources. Most of them used Monte Carlo radiation transport codes. Despite the widespread use of these codes due to the variety of resources and potentials they offered to carry out dose calculations, several aspects like physical models, cross sections, and numerical approximations used in the simulations still remain an object of study. Accurate dose estimate depends on the correct selection of a set of simulation options that should be carefully chosen. This article presents an analysis of several simulation options provided by two of the most used codes worldwide: MCNP and GEANT4. METHODS For this purpose, comparisons of absorbed fraction estimates obtained with different physical models, cross sections, and numerical approximations are presented for spheres of several sizes and composed as five different biological tissues. RESULTS Considerable discrepancies have been found in some cases not only between the different codes but also between different cross sections and algorithms in the same code. Maximum differences found between the two codes are 5.0% and 10%, respectively, for photons and electrons. CONCLUSION Even for simple problems as spheres and uniform radiation sources, the set of parameters chosen by any Monte Carlo code significantly affects the final results of a simulation, demonstrating the importance of the correct choice of parameters in the simulation.
منابع مشابه
Comparison of MCNP4C, 4B and 4A Monte Carlo codes when calculating electron therapy depth doses
ABSTRACT Background: accurate methods of radiation therapy dose calculation. There are different Monte Carlo codesfor simulation of photons, electrons and the coupled transport of electrons and photons. MCNPis a general purpose Monte Carlo code that can be used for electron, photon and coupledphoton-electron transport.Monte Carlo simulation of radiation transport is considered to be one of the ...
متن کاملEvaluation of cellular S-value of auger electrons emitting 111In radionuclide by Geant4 and its comparison with MCNP5 Monte Carlo codes and MIRD published data
Introduction: Now day Ionizing radiation has found increasing applications in cancer treatment. However, in the treatment different kinds and size of tumors especially metastatic and small size tumors, conventional methods of external radiation therapy are not common. In radionuclide therapy, the use of monoclonal antibodies has made it possible to achieve maximum dose to small size tumor and m...
متن کاملComparison of ScintSim1 and Geant4 Monte Carlo simulation codes for optical photon transport in thick segmented scintillator arrays
Introduction: Arrays of segmented scintillation crystals are useful in megavoltage x-ray imaging detectors for image-guided radiotherapy. Most previous theoretical studies on these detectors have modelled only ionizing-radiation transport. Scintillation light also affects detector performance. ScintSim1, our previously reported optical Monte Carlo code for such detector...
متن کاملCalculation of Absorbed Glandular Dose using a FORTRAN Program Based on Monte Carlo X-ray Spectra in Mammography
Introduction: Average glandular dose calculation in mammography with Mo-Rh target-filter and dose calculation for different situations is accurate and fast. Material and Methods: In this research, first of all, x-ray spectra of a Mo target bombarded by a 28 keV electron beam with and without a Rh filter were calculated using the MCNP code. Then, we used the Sobol-Wu parameters to write a FORTRA...
متن کاملEvaluation of Electron Specific Absorbed Fractions in Organs of Digimouse Voxel Phantom Using Monte Carlo Simulation Code FLUKA
Background: For preclinical evaluations of radiopharmaceuticals, most studies are carried out on mice. Values of electron specific absorbed fractions (SAF) have had vital role in the assessment of absorbed dose. In past studies, electron specific absorbed fractions were given for limited source target pairs using older reports of human organ compositions.Objective: Electron specific absorbed fr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Medical physics
دوره 36 11 شماره
صفحات -
تاریخ انتشار 2009